Postée il y a 9 heures
Dans le domaine des cellules solaires, outre la technologie Si bien établie, les cellules solaires dites de 3e génération explorent soit des matériaux moins chers, soit des utilisations alternatives, c'est-à-dire au-delà des cellules solaires noires classiques qui décorent les toits des maisons.
Dans ce contexte, l'objectif du consortium français TRANSITION est d'explorer ce que l'on appelle les « cellules solaires à colorant » (DSSC), qui seraient totalement transparentes, par ex. n'absorbant que la partie invisible du spectre solaire. Des cellules solaires transparentes pourraient à terme remplacer nos fenêtres, et produire de l'électricité tout en préservant l'esthétique d'un bâtiment.
Avec cette perspective, le projet inter-disciplinaire TRANSITION regroupe des chimistes d'Amiens (F. Sauvage, coord.) et de Nantes (F. Odobel et son équipe), et l'équipe BIODYN de l'Inst. de Physique et Chimie des Matériaux de Strasbourg (IPCMS, https://www.ipcms.fr/en/equipe/biodyn/). Nous avons récemment fait des progrès importants avec des colorants absorbant le proche infrarouge pour les cellules solaires à colorant (DSSC) [1-3]. En particulier, nous avons pu obtenir les meilleures performances pour des cellules transparentes en termes de rendement de conversion de puissance (PCE) et de transmission moyenne dans le visible (AVT). Les prochaines étapes de notre projet concernent les DSSC avec de nouveaux colorants proche IR plus performants et des électrolytes à l'état solide, qui devraient augmenter le PCE jusqu'à 7%.
La spectroscopie ultrarapide est l'outil de choix pour étudier les processus d'injection de porteurs et leurs processus compétitifs tels que le transfert d'énergie du monomère à l'agrégat. Un enjeu central est de tester par spectroscopie électronique 2D si les agrégats moléculaires libèrent des électrons et contribuent ainsi à la production de photo-courant. Ceci est généralement considéré comme impossible, mais différentes observations indiquent que la situation est différente pour nos cellules.
[1] T. Baron et al., Angewandte Chemie (2022), 61, e202207459
[2] T. Baron et al., J. Mat. Chem. A (2023), 11, 16767-16775
[3] M. Kurucz et al., ChemPhotoChem (2024), 8, e202300175
Le chercheur ou la chercheuse post-doc intégrera l’équipe BIODYN de l’IPCMS (https://www.ipcms.fr/en/equipe/biodyn/) et travaillera sous la responsabilité de S. Haacke.
A l'Institut de Physique et Chimie des Matériaux de Strasbourg, nous étudions les DSSC dans le proche IR depuis plus de cinq ans. Le projet post-doc s'inscrit dans la continuité de la thèse réalisée avec les mêmes partenaires. Le groupe de F. Odobel (CEISAM Nantes) invente et synthétise de nouveaux colorants absorbant le proche IR, à base de cyanines. F. Sauvage et son équipe (LRCS Amiens) fabriqueront les électrolytes à l'état solide et optimiseront les propriétés des matériaux (par exemple la composition de l'électrolyte) afin d'obtenir les meilleures performances de dispositif. Dans TRANSITION, la société dérivée G-LYTE a rejoint le consortium dans le but de produire des panneaux de cellules solaires plus grands de 100 cm2 et de tester ceux-ci en termes de durée de vie et d’identifier les processus susceptibles de dégrader les matériaux.
L’équipe BIODYN (“Biophysics and Dynamics of Organic Nanostructures”) est sous la responsabilité de J. Léonard et S. Haacke (https://www.ipcms.fr/en/equipe/biodyn/).
Le poste se situe dans un secteur relevant de la protection du potentiel scientifique et technique (PPST), et nécessite donc, conformément à la réglementation, que votre arrivée soit autorisée par l'autorité compétente du MESR.
Sécurité laser
Risques chimiques mineurs (manipulation de solvants) Laser safety
Minor chemical hazards (solvent handling)